
Online Submission ID: 118

In Situ Volumetric Data Visualization with Feature Tracking using
Explorable Images

Category: Research

ABSTRACT

Parallel numerical simulation is a powerful tool used by scientists to
study complex problems. It has been a common practice to save the
simulation output to disk and then conduct in-depth analyses of the
saved data after the simulation is over. System I/O capabilities have
not kept pace as simulations have scaled up over time, so a com-
mon solution has been to output only subsets of the data to reduce
I/O. However, as we are entering peta- and exa-scale computing,
the sub-sampling approach is becoming an unreasonable solution
to the I/O bottleneck. In situ visualization/analysis is a promising
way to address this issue by reducing storage requirements. We
present a novel approach using explorable images to provide volu-
metric data visualization. We extend previous explorable images to
allow feature extraction and tracking in addition to standard explo-
ration in the data space. Additionally, we make use of knowledge of
features-of-interest specified by user interaction with feature track-
ing to refine explorable images later in the simulation.

Index Terms: I.3.2 [Computer Graphics]: Graphics Systems—
Distributed/network graphics I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—Color, shading, shadowing,
and texture;

1 INTRODUCTION

As simulations enter the exa-scale, researchers can no longer de-
pend on the traditional method of simply saving raw data occa-
sionally, then performing visualization as a post-process. The por-
tion of the raw simulation data that can be feasibly stored for post-
processing has simply become too small as computational capabil-
ities on large parallel systems have outstripped the available I/O.
Maximally efficient use of this I/O has therefore become critical.
Ultimately, it has become necessary to find ways to process the raw
data before output. The goal is to capture as many interesting as-
pects of the raw data as possible, while still minimizing the final
output size.

One technique to improve I/O efficiency has been to perform vi-
sualization in situ with the simulation. This method reduces the size
of raw outputs to visualization outputs, which is often simply a set
of images or videos. A disadvantage of this technique has been the
loss of the capability for exploration of the output data: Because
good visualization parameters are often not known a priori, a ’best
guess’ must be used. Poor parameter choices may result in wasted
simulation time, so researchers must manually search for good vi-
sualization parameters via repetitive small-scale simulations, then
hope that these parameters will still be appropriate at full-scale and
full-length simulations. Alternatively, researchers may opt to sim-
ply generate many in situ images with a variety of settings in the
hope that any relevant data is captured. Even so, the generated
images are static, so after simulation completion, researchers are
limited to these specific views of their results.

Visualization is not the only kind of data analysis that is possi-
ble to conduct in situ. In addition to obvious techniques like sta-
tistical analysis, more complicated tasks such as feature extraction
and tracking are possible. This is an interesting case, as the out-
put features being tracked are not especially relevant unless the raw
simulation output containing these features is output as well, thus
limiting the utility of such a technique.

Previous work with Explorable Images has combined the advan-
tages of in situ visualization with some of the exploration capa-
bilities that were possible with visualization as a post-process. In
the case of volume visualization, explorable images allow explo-
ration of transfer function modification and relighting. It has been
demonstrated that the cost of explorable image generation scales
well and has an insignificant cost in computing time as compared
with the running simulation. However, thus far it has not been pos-
sible to adapt explorable image generation based on user interac-
tivity. Specifically, there are cases where a user may know which
portions of an explorable image are interesting during an early stage
of the simulation.

Existing explorable image implementations do not provide a
method for selecting these specific areas of interest, so the user
must generate the entire image at the maximal sampling rate that
may be necessary to fully capture any feature. Because of this, the
majority of the size of an explorable image may be used to repre-
sent portions of the simulation that are known to be uninteresting,
but are still necessarily captured at high detail. By providing maxi-
mal exploration only in the areas known to be interesting to the user,
we may provide significant improvements in explorability without
unnecessary increases in the size of the output.

We present an extension of Explorable Images that allows for
feature extraction and tracking in volumetric data, thus allowing for
feature exploration without incurring the storage cost of saving out
raw simulation data. We further allow users to select features of in-
terest in explorable images, then use these user interactions to feed
information to the in situ generator to provide additional detail for
these features of interest in the explorable images generated in later
timesteps. To summarize, we make the following contributions:

• A non-intrusive library that can be easily incorporated into
pre-existing simulation code bases.

• A posteriori feature extraction and tracking via explorable im-
ages without storage of raw simulation data.

• A method to use user input to determine features of interest,
then feed this information back to the simulation to allow gen-
eration of additional detail in each area of interest.

2 RELATED WORK

Ahern el al. [1] provides a decent overview of the major challenges
that the transition to exa-scale computing has brought. It describes
the exa-scale from 3 perspectives: the available hardware and soft-
ware support, the needs of scientists in different scientific areas,
and some different approaches being researched to address the is-
sues introduced by exa-scale computing. In chapter 6.1.1 of [1], the
pros and cons of in situ processing are described. [10] describes
the challenges and opportunities of in situ visualization in further
detail.

The idea of in place visualization was first introduced in [9], in
which a volume visualization is generated while a computational
fluid dynamics simulation is run. The phrase ‘in situ visualization’
was first used in [11] to describe the in place relationship between
visualization and simulations.

There are two types of in situ processing depending on where the
data is being processed, as described in [11]
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• Tightly-coupled synchronous: the data is processed using the
same computing node as the simulation. The processing stage
shares resources with the simulation, both processor time and
memory, which means no data movement is required at all.
However, it occupies some of the precious resources of simu-
lations. As a result, tightly-coupled in situ processing requires
the processing stage to be small. [24] is an example of tightly-
coupled synchronous.

• Loosely-coupled asynchronous: the data is first transferred
to another location over the network without touching the
disk, then analysis/visualization is performed using different
computing nodes. Moving the data is expensive, but this
approach does not pause the simulation in order to perform
analysis/visualization. In transit is usually used to describe
loosely-coupled asynchronous, [13] gives a few examples of
in transit visualization.

Both types of in situ processing have their advantages and disad-
vantages. In our case, our overhead is quite small when compared
to the simulation, so we are using the tightly-coupled synchronous
approach.

In situ generation of static images is a well-known technique.
There are multiple libraries that enable in situ visualization, in-
cluding ParaView Catalyst[2], VisIt and Damaris[4]. Static images
represent the smallest possible data size output from in situ visu-
alization, but staic images can present only a very small fraction
of the original volume to the scientists. To address this limita-
tion, a common solution is to generate multiple sets of static images
with different settings. [8] generates images from many viewpoints.
This apporach allows users to explore many perspectives around the
original volume, but requires the storage of many static images, and
can become prohibitive as a result. Explorable images provide an
alternative to the storage of many discrete images for such purposes.

The concept of the explorable image was first introduced by
Tikhonova in [19]. In this work, the development of the Ray At-
tenuation Function allows users to explore the transfer function do-
main in an image without resimulation. In [18, 20], Tikhonova fur-
ther extends explorable images by introducing proxy images and a
camera modification technique, which enables relighting and small
view-angle manipulation.

In [21], Tikhonova presents an efficient technique for scalable
parallel generation of explorable images. In this paper, Tikhonova
notes that a common way to parallelize simulation is to have each
process handle a sub-volume of the simulation. Therefore, sort-last
parallel rendering [5] is a natural approach.

Explorable image were also extended to flow field visualization.
[23] uses an image based technique to in situ generate pathtubes of
flow field simulation.

After rendering the images locally, a final composition is re-
quired to generate a global image. The two most common com-
position techniques are the 2-3 swap[25] and direct send [5]. The
2-3 swap requires multiple rounds of communication between pro-
cesses but in each round only a few messages are received by each
process. On the other hand, the direct send approach has only 1
communication round but each process must send an image to each
other process, requiring n2 messages. We implemented both the
direct send and the 2-3 swap methods.

Feature-based data exploration is considered a key approach for
the study of large volumetric data sets. Conventional approaches
extract features from individual timesteps and then associate them
between consecutive timesteps. More recent work utilizes either
higher-dimensional iso-surfacing [7] or non-scalar representations
of the data [17] for feature tracking, which requires no correspon-
dence analysis over time. Prediction-adjustment based approaches
[16, 3, 14, 22], on the other hand, first predict candidate regions
based on the feature information (e.g. centroid location) extracted

from previous timesteps, and then match or adjust the predicted re-
gion for correct feature tracking. Volumetric features can also be
clustered based on similarity measures and track features of similar
behavior in groups [15].

The prediction-based approach are appealing for their computing
efficiency and the reliability in an interactive system. We generalize
the prediction-correction based tracking approach used in [14] and
[22].

3 METHODOLOGY

In this section, we first present the expected workflow for scientists
that use our system. We will then describe in detail how to generate
our extended explorable images, and how to use these extensions to
enable feature extraction/tracking. Finally, we will explain how we
can provide feedback to the simulation based on user interaction to
enable adaptive detail in explorable images.

3.1 Workflow Overview
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Interactive  
Exploration 

Feedback Transfer Function Configuration  

Lighting Configuration  

Feature Selection 

Feature-based Exploration 

Figure 1: Workflow for data analysis of active simulation with ex-
plorable images. When a simulation is begun, we generate ex-
plorable images according to default settings. As users interact with
these images, we feedback information about these interactions to
the simulation, thus enabling higher detail on regions of user inter-
est in future explorable images.

A primary goal in creating our in situ explorable image library
was to allow for easy integration into simulations. Scientists may
integrate our library by adding 3 small code snippets. Specifically,
the library must be initialized, the volume data must be occasionally
made available to the library, and the library must be occasionally
commanded to output images. We make use of the popular CMake
build system to help ensure that building our library in new envi-
ronments is as simple as possible.

After our in situ library has been incorporated, explorable images
will be generated as the simulation runs. Scientists can then use our
special viewer to open and interact with the explorable images. Our
explorable images enable scientists to change transfer function set-
tings and lighting parameters. Furthermore, scientists may select
features of interest by using our viewer. After each feature is se-
lected, it will be tracked both forward and backward through time
when the scientists explore the data temporally. Sometimes, the
original visualization parameters might not reveal what scientists
want to see, so our viewer allows the scientists to upload new set-
tings to the simulation on the fly to ensure that future explorable
images generated from the simulation will be using better settings.

3.2 In Situ Explorable Image Generation
In this section, we will briefly explain the explorable image tehc-
nique for Tikhonova’s explorable images[19, 21, 20], then describe
the extensions we have made to this technique.

3.2.1 IAF and Depth Proxy
In [19], Tikhonova introduced the Ray Attenuation Function. This
is a technique to transform and discretize the volume rendering in-
tegral into bins on the intensity domain. To be specific, the volume
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rendering integral is given by [12]:

C =
∫ D

0
C(t)τ(t)e−

∫ t
0 τ(s)dsdt, (1)

where C(t) is the radiance or color and τ(t) is the attenuation of a
sample t along the view direction. As each ray is cast, intensities
are attenuated at each sample position along these rays. Instead of
attenuating to a single value, the ray attenuation function attenu-
ates into a finite number of bins in the intensity domain. The ray
attenuation function is given by [19]:

F(k) = ∑
{i|i=0,1,...,M} AND bin(i)=k

α(i)
i

∏
j=0

(1−α( j)), (2)

where bin(i) is a function that assigns an intensity value of a sample
i to a bin k and α( j) is the opacity of a given sample j.

In [20], Tikhonova extends the ray attenuation function and in-
corporates it with other proxy images to create explorable images.
The specific type of proxy image of interest is the depth image.
This allows us to reconstruct the normals by analysis of the gradi-
ent of local variations in depth. Availability of these normals allows
exploration of lighting parameters in the resultant images. Further-
more, such normals allow us to perform more accurate feature ex-
traction/tracking. Tikhonova also presents a multi-view perspective
proxy image, which allows users to rotate the camera slightly while
exploring, but our current work does not make use of these multi-
perspective proxy images.

Explorable images are a natural fit for in situ visualization be-
cause the key benefit of explorable images is deferred interaction.
As a result, Tikhonova extends the ray attenuation function to inter-
val attenuation function in [21]. The basic idea is to subdivide a ray
in volume rendering to intervals. The attenuation of each interval
can be computed separately, then later these interval attenuations
can be composited into a complete interval attenuation function.
The interval attenuation function allows the ray attenuation func-
tion to be computed in parallel, which is necessary for efficient in
situ visualization. The interval attenuation function for an interval
[L,M] is given by:

F[L,M](k) =
M

∑
i=L,bin(i)=k

α(i)
i−1

∏
j=L

(1−α( j)), (3)

where bin(i) is a function that assigns an intensity value of a sam-
ple i to a bin k and α( j) is the opacity of a given sample j. The
attenuation of the ith sub-interval is computed using:

A(i) =
Ni−1

∑
j=0

(1−α( j)), (4)

where Ni is the number of samples in a sub-interval and α( j) is the
opacity of a given sample j. Finally, the total interval attenuation
function can be composited as:

F(k) =
P

∑
i=0

F(i,k)
i−1

∏
j=0

A( j), (5)

where F(i,k) is the interval attenuation function of the ith sub-
interval for a bin k.

3.2.2 Integrated Ray Casting
The interval attenuation function is computed by ray casting over
the sub-volumes. High sampling rates are necessary to perform
high accuracy ray casting, which directly leads to a high rendering

cost and is thus not preferable in an in situ visualization environ-
ment.

In traditional direct volume rendering, high sampling rates are
avoided by using a pre-integration table [6]. The idea of pre-
integration is to attenuate not only at the sampling points along a
ray, but to integrate over the segments on the ray between these
sampling points. Since this integration is done in the transfer func-
tion domain, pre-integration can be performed by pre-computing all
possible combinations in the transfer function, which is then stored
in a 2D array. It is possible to apply pre-integration when comput-
ing interval attenuation functions by extending the 2D array to a 3D
array, where the third dimension stores the attenuation in each bin
of the interval attenuation function. However, this approach uses
significantly more memory, especially when as we increase the res-
olution of the transfer function or the number of bins in the attenu-
ation function. Also, note that the transfer function is replicated in
each node in the parallel rendering process.

We introduce a hybrid method that minimizes both the mem-
ory and time costs of preintegration of interval attenuation function
generation. Whenever a ray segment is obtained while we are cast-
ing a ray, there are 2 possible scenarios:

1. Both end points of the ray segment are in the same bin of the
interval attenuation function. In this case, the end points must
be close to each other in the transfer function domain. In this
situation, it is simple and efficient to perform the integration
in place.

2. The end points of the ray segment are in different bins of the
interval attenuation function. Specifically, the first end point
belongs to some initial bin, the second end point belongs to
some final bin, and there may be other bins in between these
initial and final bins. Figure 2,demonstrates how we perform
in place integration for both the initial bin and the final bin.
For the bins in between, we must integrate over the entirety of
each bin. To do so efficiently, we pre-integrate the attenuation
for each bin and query them as needed during the ray casting.

Figure 2: Demonstration of integration for ray casting with our hy-
brid approach combining pre-integration with in place integration.
On the left, a ray segment is ready for integration. Between the
two end points, the ray segment crosses two complete bins (bink+1,
bink+2) and two partial bins (bink, bink+3) in the intensity domain.
The attenuation values of the complete bins are pre-integrated and
can be queried in constant time during ray casting. The two partial
bins require in place integration.

To represent the full integration over each bin for our hybrid
method, only n extra floating point numbers are required, where
n is the number of bins in the interval attenuation function. We are
thus able to eliminate low-sampling-rate artifacts for our generated
explorable images as shown in Figure 3.
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(a) Without Hybrid Integration (b) With Hybrid Integration

Figure 3: A comparison of ray casting with integration over the
intervals between ray samples, and without such integration. Both
images show the same isosurface of a supernova dataset, and are ob-
tained at the same sampling rate along each ray. At left, we demon-
strate that without integration over the ray segments we may miss
important isosurfaces, leading to the ring artifacts shown. On the
right, we demonstrate that our hybrid integration technique mini-
mizes such artifacts as well as previous preintegration techniques.

3.2.3 Simplified Default Transfer Function

In observations of how researchers interact with explorable images,
we notice that people generally want to visualize semi-transparent
isosurfaces in direct volume rendering rather than using smooth
transfer functions that generate less detail in the output image. As
a result, we provide a simplified default transfer function. With our
simplified default transfer function, we can generate good images
while further reducing the rendering cost. Note that if a more so-
phisticated transfer function is needed then users can always supply
their own transfer function for the rendering of explorable images
in place of this default.

The simplified transfer function generates semi transparent iso-
surfaces for each bin in the interval attenuation function. Each iso-
surface represents the middle intensity value of a bin, and the at-
tenuation of the isosurfaces are set to be 1

n . We are able to use
a parametric representation of this default transfer function, which
means less memory is needed for storage.

When we combine the default transfer function with our hybrid
integration, we are able to further simplify the ray casting proce-
dure. Given a ray segment in ray casting, we test which isovalues
are in between the two end points. Then we can composite the at-
tenuation values of the isosurfaces.

3.3 Feature Extraction/Tracking

An explorable image consists of a sequence of proxy images, each
corresponding to an intensity value. although the attenuated proxy
images are sufficient for approximate rendering the original vol-
ume, the depth information of each voxel is lost. That is, the 3-
dimensional geometry cannot be reconstructed using only the proxy
images. Assume a proxy image corresponding to one bin as de-
picted as the top-left image of Figure 4, the two features colored in
light blue and orange will be considered as a single feature since
they have the same isovalue. To distinguish these overlapped fea-
tures and enable more precise feature extraction, we add a proxy
image to store the depth information of each pixel in the explorable
image. Note that naively storing depth values of all voxels on iso-
surfaces will simply result in layers of a point cloud, which would
be even less optimal than simply storing the raw data. Instead, we
store only the depth information of the front face of each feature.
In general, this is all that is required for detection of overlapping
features.

For each bin in the explorable image, we store the depth value of
the closest occurrence of an isosurface in that bin. This depth map
can be regarded as a normal 2-dimensional image, where the inten-
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Figure 4: The illustration of the feature extraction and tracking pro-
cess. The explorable image is enhanced with a layer of depth in-
formation (as shown on left of the figure). This depth information
allows us to separate overlapping features within the same proxy
image. On the right hand side, the prediction-correction schema of
feature tracking is illustrated. A candidate region of feature is first
predicted based on previous time steps. The candidate feature is
then adjusted by shrinking and then expanding to match the actual
shape of the feature.

sity value of each pixel is encoded as the depth value. Features of
different depth values can be separated, as colored in the left of Fig-
ure 4. As the simulation continues, a sequence of 2-dimensional im-
ages are generated. We extend our previous work to 2-dimensional
explorable image space in order to support feature extraction and
tracking on such sequences of explorable images. At a start time
point T0, the features are extracted using the region growing algo-
rithm. As time evolves, we first predict, for each feature, the candi-
date position based on their history movement. Once the candidate
region is obtained, we shrink the predicted region based on the cur-
rent depth map of T1 until the common area of the prediction and
the actual region is obtained. We then expand the common area
using region growing until the actual feature boundary is reached.
The prediction-correction tracking schema is illustrated in Figure 4
on the right.

3.4 Feedback to In Situ
As users interact with the explorable images, they sometimes find
that additional detail would be helpful in specific regions of the in-
tensity domain. Such ’adaptive binning’ is helpful beause it allows
users to tweak parameters to ensure useful images are created even
while the simulation is still being run.

Figure 5 shows a synthesized example for adaptive binning. It is
normal to calculate the range between the minimum and maximum
intensity of the volume per timestep, which is intended to scale the
data to fit the transfer function. However, sometimes these data
values are skewed enough that almost all of the data values end
up within one bin of the interval attenuation function, such as Fig-
ure 5a. In this situation, the visualization would only able to show
a very limited portion of the data. By using adaptive binning, when
scientists notice that the existing bins do not reflect the ideal dis-
tribution for a dataset, they can immediately supply a new bin dis-
tribution array so that more bins are available in especially dense
or interesting regions of the intensity domain. The simulation will
then be able to pick up the new setting in the next timestep, and
when new explorable images are generated, they will make use of
the new bin distribution to efficiently sample intensity values, as
demonstrated in Figure 5b, where many previously undetected fea-
tures are revealed after adaptive binning.

4 RESULTS

In this section, we begin by presenting performance information for
in situ explorable image generation, providing a breakdown of the
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(a) This explorable image demonstrates a problem that can occur when the distribution
of the input volume is skewed such that almost all of the data ends up being placed
into a single bin, as shown in the transfer function on the right. As a result, only a
tiny fraction of the original data can be shown to the users for exploration. To address
this situation, scientists can immediately supply a new bin distribution so that when the
next explorable image is generated, a better bin distribution will be applied.

(b) Adaptive binning allows the user to separate intensity values of interest into differ-
ent bins. In this case, we reduce the number of bins that had been previously applied
to empty intensity regions, and instead allocate more bins in the intensity regions of
interest. Although the total number of bins remains identical, as shown in the transfer
function at right, adaptive binning allows us to present many more of the interesting
details of the original data.

Figure 5: Comparison of a simple but poor default binning with the
adaptive binning technique supported by our library.

different variables that can affect performance, and how this perfor-
mance affects the simulation using our library. We will then show
the resultant images that our library can generate, and demonstrate
exploration and feature tracking.

4.1 Performance
To be practical, we must demonstrate that our explorable images
technique will not incur significant performance or storage costs
when compared to the simulation being run. I think if we integrate
that and then maybe label the axis on Fig 7 he might leave us alone
we can legitimately say that we didn’t have time to do the re-binning
results with Dr. Ono’s data.

4.1.1 Environment
We use the Hopper machine at NERSC as our performance test
environment. Hopper consists of 6,384 nodes, 24 cores per node,
and 32 GB memory per node. As suggested in NERSC’s documen-
tation, we make use of OpenMP by spawning 4 MPI tasks and 6
OpenMP threads per node.

The computational fluid dynamics simulation we use is provided
by Ono from RIKEN, Japan. Ono has been using this simulation
on the K-computer to generate results with very large volumes. For
reference, this simulation generates data such as the one showin in
Figure 6. The variable we use in this paper is the 2nd invariant
of velocity gradient tensor (i2vgt). The benefit of using i2vgt is to
identify potential vortex features.

4.1.2 In Situ Explorable Images
To demonstrate the feasibility of our technique in an in situ environ-
ment, we conduct several runs of the simulation provided by Ono.

Figure 6: Sample direct volume rendering image generated using
the data from Ono’s simulation. The image is showing a relatively
early stage of the simulation, where the ”ring” feature hasn’t col-
lapsed into the boundary.

We compare the time taken to generate explorable images of dif-
ferent resolutions in Figure 7a, which demonstrates that both the
ray casting time and the image composition time are linearly re-
lated to the number of pixels in the output image. We conducted
4 runs of the simulation, where each run simulates a 8643 volume
with 83 processes. This translates to a 1083 subvolume in each pro-
cess. We generate explorable images at intervals of 20 simulation
timesteps. With 10242 image resolution, we require 2.5679 seconds
to generate an explorable image, which consists of ray casting and
composition time. For comparison, the simulation takes an aver-
age of 122.42 seconds to compute the 20 timesteps between each
generated explorable image.

To determine how ray casting time is affected by simulation vol-
ume size, we conducted 3 runs of the simulation. The same ex-
plorable image resolution is used for all 3 runs, which is 10242.
The subvolumes we used for comparison were sized at 363, 723,
and 1083 voxels per process. During raycasting, we use a sampling
rate of one sample per voxel-length along the ray. The result of
this comparison is shown in Figure 7b, which demonstrates that ray
casting time is linearly correlated to the number of voxels in each
subvolume.

The extensions we have added do not interfere with the known
scalability of explorable image generation as demonstrated by
Tikhonova [21].

4.1.3 Feature Extraction/Tracking on Explorable Images
Because feature extraction and tracking are performed based on the
generated explorable images rather than the original volume, this
operation can be performed locally with no interference with in situ
processing. The use of region growing and boundary adjustment for
feature extraction and tracking give a time complexity proportional
to the number of pixels within each feature, and how many such
pixels have changed between timesteps. Because it is efficient to
generate many explorable images in situ, we expect that the pixel
difference between consecutive explorable images will in general
be very small. In our tests, the feature extraction and tracking take
an average of 50 milliseconds for a 10242 explorable image, which
is negligible compared to cost of generation of explorable images,
which is itself negligible in comparison to the simulation.

4.2 Visualization
By using our viewer, users can interactively explore an explorable
image sequence. In addition to the previously supported kinds of

5



Online Submission ID: 118

(a) The ray casting time in explorable image generation is linearly correlated to the
image resolution. This is to be expected because we perform a single ray cast for
each pixel of the output image. Image composition time is also linearly correlated to
the image resolution because this process consists of a single loop through each pixel
to composite the interval attenuation function. Simulation time is not affected by the
image resolution and is thus not shown in the chart: for all 4 runs, the simulation time
is consistent with its average of 6.1213 seconds per timestep.

(b) Our sampling rate along each ray in a raycast is 1 per voxel-length. As a results,
our ray casting time is linearly correlated to the subvolume size (the number of voxels
processed by a core).

Figure 7: In situ timing results

exploration such as transfer function modification and relighting,
users can select/extract features and track such features both for-
ward and backward through time.

4.2.1 Explorable Image

The transfer function in our viewer is represented as a bar chart
Figure 8, where the number of bars displayed is equal to the number
of bins in the interval attenuation function. Color and opacity for
each bin can be modified with the transfer function editor. Figure 9
shows the typical process in which users interact with the transfer
function. In general, users have the easiest time selecting features
from left to right, skipping any uninteresting bins along the way,
until all features of interest are visible.

Explorable images are generated at many timesteps throughout
a simulation, so we provide the ability to explore the time domain
as well. To do so, we provide a simple handle which the user may
drag to change the time step currently displayed. Users can also
press the play button and enjoy an animation from the beginning of
the simulation to the end.

4.2.2 Feature Extraction/Tracking

Often, features of interest will not show up in early stages of sim-
ulations. The capability for storing potential feature information in
the form of explorable images provides scientists with the flexibil-
ity of studying the simulation with feature extraction and tracking.
Figure 10 demonstrates an example of backward tracking of vol-

Figure 8: Transfer function editor. The number of bars is equal to
the number of bins in the interval attenuation function (in this case,
16). The semi transparent bars are the opacity map, which we can
drag to modify the opacity of each bin. The triangle handles at the
bottom allow modification of the colors of the handle. The back-
ground gradient of the main window changes according to these
color handles. The top bar shows the final result of the transfer
function on a black background.

umetric features. As the simulation runs, we generate a sequence
of explorable images. The domain scientist explores the simulation
by adjusting the transfer function and lighting settings, then waits
until desired features show up in later explorable images. Once the
identified features are selected and highlighted (the four features
in orange as shown in Figure 10a), they may be tracked backward
(or forward) based purely on the information embedded in the ex-
plorable images.

When compared to conventional approaches that attempt to store
the entire raw volume, feature tracking from explorable images en-
ables a much longer history of simulation such that the origin of
feature-of-interest are traceable. While comparing to 2-dimensional
image based feature extraction and tracking, the depth information
ensures relatively higher fidelity, so that overlapping features can
be identified and tracked separately.

5 DISCUSSION

In the results section, we have shown that our rendering cost is only
a small fraction of the simulation cost, and our rendering time scales
very well in the parallel environment. Performance is affected by
several parameters, including output image resolution, sampling
rate along each ray, the size of the subvolume being processed on
each core, and the number of bins in the interval attenuation func-
tion.

5.1 Parameter Settings
Image resolution linearly affects the ray casting and image compo-
sition time, because a single ray cast is performed for each pixel
of the output image. Increasing the sampling rate along each ray
will increase raycasting time linearly, but will not alter composition
time. In our library, the sampling rate is controlled by the volume
size and the ray step size. Generally, we default the ray step size to 1
voxel width. As a result, as the volume size increases, the sampling
rate increases, which increases the ray casting time linearly. Al-
though we have implemented integration over ray segments, large
ray step sizes still generate many ’stairstep’ surface artifacts. In our
experiments, a single sample per voxel-length is generally sufficient
to mitigate such artifacts.

Increasing the number of bins in the interval attenuation func-
tion allows each explorable image to better approximate the orig-
inal direct volume rendering result. However, as the number of
bins increases, we also linearly increase the memory and storage
requirements. Because we are compositing the interval attenuation
functions, we must send them across the network to other processes.

6
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Figure 9: (a) shows an image with the default binning distribution, where the orange region occupies a whole bin. Obviously there are more
details within the orange region. (b) shows the same timestep of supernova with adaptive binning, where there are more bins in the core
region of the supernova. (c) shows that we can change the transfer function to generate better color scheme.

Therefore, increasing the number of bins also increases the image
composition time. In our experience, 16 bins are often sufficient to
generate a good approximation of the volume. By introducing the
adaptive binning, this problem is partially sovled because scientists
often focus on a small range in the intensity domain.

5.2 Limitations
Each explorable image is an approximation to the original direct
volume rendering. The interval attenuation function is a discretiza-
tion of the direct volume rendering integral into a finite number of
bins, usually a small number. As a result, an explorable image is
unable to reconstruct a completely accurate direct volume render-
ing image, but the result is usually close enough for user analysis.
[21] shows multiple comparisons between explorable images and
ground truth direct volume rendering images.

Depth proxy images can only capture the front face of an iso-
surface, while the interval attenuation function attenuates both the
front and back face of the isosurface. If a slab is being rendered
within a bin, a depth proxy image is unable to accurately represent
the normal of such a slab. As a result, the lighting computed us-
ing the depth map is only an approximation. Because of the same
reason, clipping planes is currently not a supported method of ex-
ploration for these images.

The interval attenuation functions are computed for a given view,
so user modification of the camera angle is prohibited. [20] pro-
vides multi-view proxy image that allows limited interaction to the
viewing direction, but this would introduce a higher level of un-
certainty in the output. However, due to the compactness of the
explorable image, users can choose to generate multiple explorable
images from different view angles.

Currently, features can only be tracked individually within each
bin layer. The reason is different layers represent different isoval-
ues, and with different isovalues, the features should be different.

6 CONCLUSION

We present a complete workflow to allow scientists to perform in
situ visualization. With our library, scientists may generate ex-
plorable images in situ. Then, while the simulation is still running,
the scientists may interact with the explorable images in both the
transfer function domain and time domain. Additionally, scientists
may extract and track features of interest both forward and back-
ward through time. When features of specific interest are found,
scientists may use our library to apply new parameters to future

explorable images being generated, thus steering the generation of
better explorable images at later timesteps.

7 FUTURE WORK

Although the multi-view proxy image introduces additional uncer-
tainty, it still provides the significant advantage of view-angle mod-
ification. We will add the multi-view proxy image to our library,
and add methods to approximate the uncertainty introduced by such
explorations.

An explorable image is a middle ground between the storing raw
simulation data or static images. We will continue to implement
additional methods of exploration while retaining low storage cost.

Currently, our library only supports regular grids, but more and
more simulations have moved to unstructured grids to provide
higher detail in regions of higher importance. We will extend ex-
plorable images to support these different types of grid representa-
tion.

Features are currently tracked individually within each bin layer.
By examining the position and depth information of these features,
we should be able to determine many relationships between features
across bin layers.
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